MU/STELICOLA ANTARCTICUS SP NOV. (CESTODA; TRYPANORHYNCHA) FROM AUSTRALIAN ELASMOBRANCHS, AND A REASSESSMENT OF THE FAMIX MUSTELICOLIDAE DOLLFUS, 1969

by Ronalid A. Campbeli* \& Ean Beveridge \dagger

Abstract

Summary Cimpatil, R. A, \& Bryexibee, 1, (1988) Mfustelicolo ontarericus sp, nov, (Cestoda: Typanarhyncha) from Austratian elasmobranchs, and a reassessment of the fanily Mustelicolidae Dollfus, 1969. Touns. R. Soc: 5 Aust. 112), 153-161, 30 November, 1988. Mistelicola amtarcticus sp, nov, is deseribed from adult worms in the spiral valve of Mustelus amaronicus (Guenther) collected in coastal waters off Bicheno, Tasmania. Characters differentiating M. antureticus from M. woodsholei Dollfus, 1969 , the only other known species, are a much smaller ratio of pars bulbosa to pars vaginalis (t: 1,3 versus 1: 2.1 , approximately fwice as nany testes per segment (av. 780 versus 300), and reversed order of hook sizes $2(2)$ and $3(3)$ for the two species. The armature of M. woodsholei is completely described for the first time. As in M. antarcticus, it consists of a unique poeciloacanthous type consisting of tbree double chainctes and is most similar to members of the Lacistorhynchidac Guiart, 1927 and Callitetrarhynctinae Dollfus, 1942. Other new morphological features described are an bermapfradith sac, pre-formed uterine pore, lack of true prebubar organs, atd ongin of the retractor muscte in the anterior $1 / 3$ of the bulb. The family Mustelicolidae is considered justified, based on unique features of the armature, scolex and genitalia, and is redefined accordingly.

Kev Worls: Mustelicola, Cestoda, Trypanorhyncha, new species.

Introduction

Dollfus (1969) erected the farnily Mustettcolidae for a single trypanorhynch found in the spiral valve of Mustehus comis (Mitchill, 1815) caught in Atlantic coastal waters near Woods Hole, Massachusetts. Dollfus considered the armature of Musrelicola woodsholei to be of the atypical heteroacanthous type though a complete description of the tentacular armature and reproductive system was not provided. Schmidt (1986) revised the systematies of the cestodes and considered Mustelicolidas to be a symonym of Eutctrarhynchidae Guiart, 1927. making the genus Mustelicola Dollfus, 1969 a synonym of Parachristianella Dollfus, 1946. The precise position of the species within Parachristianella was not specified. Schmidt's proposed synonymy of an atypical heteroacanth (Mustelicola) with a typical heteroacanth (Parachristianelle) prompted a re-examination of M. wondsholei to determine the exact nature of its armature and anatomy. Altempts to find additional specimens of M. woodsholei have been fruitless, but a second species, described herein, was recently collecred from Mustelus antareticus (Guenther, 1870) off the coast of Tasmania. In this paper the description of the type species is corrected and expanded, a new species is added to the genus, the

[^0]taxonomic position of the family re-assessed, and the family Mustelicolidae redelined.

Materials and Methods

Mustelicolid cestodes were found in the spital valves of two of 73 sharks (Mustehes amioncticus) examined off southern Australian coasts and were fixed in hot 10% buffered formalin. Whole mounted specimens were stained with Celestine blue, deflydrated in ethanol, cleared in clove ail and mounted in balsam. Tentacles were dissected free, examined in glycerol, and mounted in glycerine jelly. Some segments were embedded in paraffin, serially sectioned at $8-10 \mu \mathrm{~m}$, and stained with Harris' hematoxylin and eosin. Dallfus' bolotype was examined from the Museum National d'Histore Naturelle, Paris. The specimen was remounted and a tentacle removed and examined to provide precise orientation of the armature. Drawings were made with the aid of a drawing tube.

Measurements are given in migrometers, unless otherwise stated, as the range followed by the mean and the number of neasurements (n) in parentheses.

Terminology for trypanorhynch motphofogy follows Dollfus (1942). Specimens have been deposited in the South Ausiralian Museum (SAM). Adelaide.

Mustelicola woodsholei Doilfus, 1969

FIGS 1-9

Description: Measurements of the holotype specimen. Scolex and strobila acraspedote total lengith 6.7 cm , maximum width 1070 . Scolex 4160

FIGS 1-5. Auatomy of Mustelicrla woodshotei. 1. Scolex. 2. Immature proglottid showing osmoregulatory ducts. 3. Male genital terminalia 4. Uterus and preformed uterinc pore. 5. Delail of bulb showing origin of tentacle shearh and insertion ol retractor muscte Scale lines: 0.1 mm .

1ong. subcylindrical, stightly wider in region of bulbs, maximum width in region of bulbs, 860 . Two bothridia, oval, elongate, 1520 long, maxinum widh 640, with broad indistinct rims, गot indented posteriorly. Pars vaginalis 2840 long, tentacle sheaths slightly sinuous, not coiled; each sheath originating from bult in prominent, symmetricat, lateral smuosily; circular musele bands similar to those associated with prebulbar organ present at posterior end of sheath, but thickering of lateral wall of sheath and "nucleus" absent, numerous gland cells surround tentacle sheaths in pedunculus scolecis. Bulbs short, 1200 long, 280 m diameter: retractor muscle originates in anterior third of bulbs. Pars post-bulbosa, 200 tong: junction of scolex and neek demarcated by a slight constriction. Scolex ratio \{pbo: pr: pbulbr i: $2.1: 0.8$.
tentacles not fully extended, torigest tentacle 1400; diameter 80 at base, 70 in mid-region; basal swelling and distinct basal grmature absent. Armature heteromorphous, poeciloacanthous. Principal rows alternate, beginning on internal face; hooks hollow, arranged in ascending half spiral rows of six hooks each (Fig. 7). Hooks ($\left(1^{\prime}\right)$ to $4\left(4^{\prime}\right)$ rosethomed shaped, with gently carved blades and long bases of implantation; hooks $1(1) 24-30(28, n=10)$ long, bases $18-28(24, \mathrm{n}-10)$, height 13-18; hooks $2\left(2^{\prime}\right)$ slighty larget, blade $26-38(33, n=10)$ long, base 22-28 (24, 17-10), height 17-24; books $3\left(3^{\circ}\right)$ $30-34(33, n=10)$ long, base $20-22(21,21=10)$, height 20-24; hooks 4(4) $26-30\{28, n-10]$ long, base 14-21 (17. n-10), height 17-20; books $5(57)$ spiniform, 14-22 (19, $\mathrm{n}=10$) tong, bate short, 8-14 $(11,0=10)$, beight $10-14$; hooks $6(6)$ in randem or "satellite" position with respect to $5(5$ "), spiniform, blade 14-16 $(15, n=10)$ long, base 6-8 $(7, n=10)$, theight 10-12. External surface of tentacle with 3 double chainettes, distinctly separated from principal rows, paired clements in cach chainette opposite each row of principle hooks: chainette clements suberiangular, $16-22(19, \mathrm{n}=10)$ long, base $12-16(14, n=10)$, height $10-13$.
First evidence of segmentation 900 from scolex; segments initially much wider than long, becoming almost at long as wide. Maturs segments acraspedote, $1900-2500(2240, n=5)$ by $3080-3470$ ($3260,11-5$): genital pores atternate irtegularly: genital pare $45-50 \%$ of segment length from anteriat margin. Cirrus (?) sac elongate, $890-980$ ($930, n-4$) by $200-2601220, \pi-4$), cirnus unarmod. simbous when fethacted; proximal cirrus surrounded by a ferw layers of gland cells; internal seminal vesicle absent; external seminal vesicle clongate, diminutive. with single surrounding layer of cells; yas deferens passer medially, coils anteriorly then posteriorty to ovarian isthonus. Testes humerous, approximately 300 in immature segments, scattered ihrough
medulla; testis diameter $40-50(43, n-5)$. Vagina a very thin tube, closely paralleting cirtus sac along posterior margia; conrse of vagita could not be traced to genital pore, Ovary bilobod in dersoventral view, situated near posterior margin of segment, Lobes $350-450(390, \mathrm{n}-5)$ by $310-380(350, \mathrm{n}=5)$. Mehlis' gland post-ovarian 280-300 (200, $n-5$) by $330-400(360, n=5)$, U-shaped; uterine duct covered by dense mass of gland cells, passes anteriorly 10 join uterus about 150 anterior to ovarian isthmus; merus thin-walled, saccular, cxcends to anterior margin of segment: preformed utcrme pore present near anterior end of uterus. Viseltine glands follicular, circumeortical, follicter c 50 in diameter.
Onmoregulatory system complex, most clearly visible in immature segments; complex of 4-6 large canals present at lateral maigins of segments, canals amastomose frequenty: on dorsal and ventral surfaces of segments are 10-12 narrower canals, either straight or regularly sinoous whicli branch and anastomose intrequently; three pairs of longitudinal canals visible in posterior end of scolex; anterior commissures лot visible.

Eggs proid, 43-55 $(45, n-3)$ by $25-35(28, n-3)$. Hoss and Lacality: Mustelus canis (Mitchill, 1815), at Woods Hole. Massachusets, US, A.

Mustelicola antarcticus sp. nov. FIGS 10-19

Description: Measarements of three fragmented aduft specimens. Scolex and strobila ataaspedote. strobita up to 6 cm Tong; maximum width 4.1 nm . Scolex 2720-2832 ($\mathrm{n}=2$) long, subcylindrical, slightly distended in region of bulbs, maximum widh at bulbs 792; scolex demarcated from neck by a slight comstriction. Two botfiridia, broadly oval, rim indistinct, slightly indented posteriorly, length 1000-1140 $(\mathrm{n}=4)$ by 980-1020 $(\mathrm{n}=4)$. Pars vaginalis 1520-1640 ($\mathrm{n}-2$ 2), tapering into jurctoan with bulbs; tentack sheaths sllightly sinous; small gland cells scattered in parenchyma of pedunculus scolecis. Bulbs 10880-1240 by 240-320 in diameter, prebulbar organs absent; retractor muscle originates near anterion extremity of bulb; pars postbulbosa extremely shor, 80 long. Scolex separated from strobila by stight constriction. Scolex ratio (pbo: pv: pbulb) 1:1.3: 0.9.

Armature poeciloacanthous, with three chainemes of paired hooks on internal face. Fully everted tentacles 1.7 mm long: diameter 114 at base, 99 at mid-tentacle, 46 at tip; basal armature and swelling absent. Principal rows alternatc, beginning on internal lace, forming ascending hall spirats of six hooks cact, Ilooks (1) mose-thorn shaped, with sharply angular bades and long bases of

FIGS 6-9, Armature of Mustelicula woodsholei. 6. Inernal tace, meabasal region, lurned slightly toward antibothridial face. 7. Antibothridial face, metabasal region, external face nn left. 8. External face, metabasal region, showing itree double chainettes $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$. 4 . Hooks 16 of principal row drawn to scale and chainette hook (c). Scale lines: tigis 6-8, 0.1 mm ; Fig $9,0.01 \mathrm{~mm}$.

FIGS 10-15. Anatomy of Musteltcola anrarcticus sp, nov, 10, Scolex. 11. Hermaphroditic sac. 12. Femalc reproductive system. 13. Eggs. 14, Mature proglottid. 15. Bulbous eversion of genital pore. Scale lines: Figs 10, 14, 0.5 mm , Fig 15, 1.3 mm ; Figs 11, 12, 0.1 mm ; Fig. 13, 0.03 mm . GD, gland cells; MG, Mehlis' glands; OC, oocapt; OD, oviduct; OV, ovary; SD, sperm duct; SR, seminal recepracle; DD, sterine duct; UT, uterus; VA, vagina; VD, vitelline duci.
implantation, tolades $33-36(35,0=10)$ long, height 15-19 ($n=11$); hooks $2\left(2^{\prime}\right)$ larger, blade length 39-42 $(40, n-10)$, base $29-31(30, n=10)$, hegght $13-21$ $(0)=10$. Hooks $3\left(3^{\prime}\right)$ simitar to $2(2)^{\prime}$ but smaller; blades 32-36 (34, $n=10$) long, base 23-26 (24, $\pi=10)$, height $15-28(n=10)$; hooks $4\left(4^{\prime}\right)$ only slighaly curved, 27-30 $29, \mathrm{n}=10$) long, base length $17-18(17, \mathrm{n}=10)$, height 15-21 $(\mathrm{n}=10)$; hooks $S\left(5^{\prime}\right)$ suabler, $21-22(21, n=10)$ long; bases 14-16 (15, $n-10)$, height $13-15(\mathrm{n}-10)$; hooks $6\left(6^{\circ}\right)$ in tandem or "sarellite" posit ren anterior to $5(5$ "), spiniform, $17-18(17, \mathrm{a}=10)$ long, base $6-9(8, \mathrm{n}=10)$, height $10-13(n-10)$. Evernal surface of tentacle with three double chainetles, distioctly separated from principal tows, chainette elements subtriangular, $22-25(23, \mathrm{n}-10)$ long, base $12-14(13, \mathrm{n}=10)$, height $13-17(11=10)$

Number of segments ahout $200(\mathrm{n}-1)$. Fitst segments appear 1.7-2 mm posterior to scolex. All segments wider than long, ackaspedote, enlarging with age. Mature segments slways wider than long, $900-3400$ by $1560-5600$. Gravid segments always longer than wide, $1080-1800$ by $3900-4200$. Genital pores marginal, itregularly alternating, equatorial, located 50% of segment length from amerior margin. Testes medullary, subspherical, 42-76 by 38-49 ($\mathrm{n}=20$), layered, vecupying available space between lungitudinal osmoregulatory canals and extremitics of 5egment. Testes number about 741-803 (780, $0=5)$ per segment. Hermaphroditic sac 544-1160 ($696, \mathrm{n}=10$) by $176-352$ (248), surrounded by weakly developed layer ol muscle fibres. Cirrus unarned, glandular, immediately distal to ovoid internal seminal vesicle. Vagina median, dilated to form seminal rooeptacte amerior to ovarian isthmus, turme laterally, lying parallel with posterior margin of hermaphroditic sate aud then enters sac; genilal sinus opens by a single duct at genital pore. Contraction ul walls of hermaphrodicic sac forms bulbous, sucker-like protuberance in which cirrus and vagusa are brought close to the surtace. Exicrnal scminal vesicle present.. Vas deferents coiled, arches rowand midlime, runs parallel with vagina posteriorly coward ovary. Ovary posteromedial, bitobed in dorsoventral vicw, crescent-shaped, maximuin dimensions $650-980$ by $178-520$, isthmus up to 80 long. Mehlis' gland postovarian, shatlow U-shaped, maximum dimensions 112-120 by 256-288. Vitellaria follicular, ieregufarly shaped, forming a layer enclosing osmoregulatory canals and reprodutetve organs, maximum dimensions of follicles 56-64. Userus median, thick-walled, reminatifg near anterior margin of segment, voluminous it gravid scements. Uterime pore near distal extrernity of uterus. Fges oval, 38-495 (45,6, $n=10)$ by $26.6-34.5(30.4, n-10)$, thiek-shelled, nonoperulate, whembryonated.

Hoxt und Locality: Mustelus aritarcacis (Guenther, 1870) (type heed, off Bichenu, Tasmania, coll, B. G1. Robertson.
Site in host. Spiral valve.
Types: Holotype S/AM V 4104 , ewo paratypes SAM 17875.

Eifmology: The specific name is after that of its hust, M. untariticus. Vollowing Arlicle 30a(1) of the International Code of Zoological Nomenclature, the generic tame is masculine th genclet.

Discussion

Dollfus (1969) described M. woudsholei and erccted the genus Mustellicola and family Mustelicolidace for it based on a single specimen. Distinctive characters of the new genus were based upon the armature, viz, Mustelicola is an arypical heteroacanth with twice as many hooks in longitudinal files of the external face as occur in Iongiludinal lites of the internal face (Dollfus 1969). This diagnosis wat never expanded. Schmidt (1986) subsequently synonymised both the family and genus with the typical heteroacanth Parachrisiiavella in the Eutctrarhynchidae.

Unforlunately only a single specimen of M. woodsholei exists and it is not satisfactory for the complere descriprion of the reproduclive system. Hovever, some specimens of the new specier, M. ahtarericis described ahove, were gravid and clearly provide these detaik. A generic delinition can therefon be derived fron the combined characters of the two species. The two spocies posisest a combination of characters not Found together in other teypanorhynch cestodes, forenost of which is the lype of armature. Examination of the armarure of the type species, M. woodsholed, clearly shows major discrepancies with the original description (Dollfis 1969) and these must be addressed because come of them have majo consequences for its taxonomic position. In addition, four cbaracters differ substantially from the original destiption. Eirstify, a preformed uterine pore is present and clearly visible as a mass of cells it the anterior end of the uterme anlagen in immature segments. Scoondiy, an external seminal vesicle is presert. Thirdly, the tentacle retractor muscle uriginates in the anterior third of the bulbus not st the posterior cad. Fourthly, a typical prebultat organ is mot present. Muscle clements surrounditg che brgin of the sheath are present in Mustelicola bui it is nou comparable to the prebulbar oigan of cutetrarhywhids. In the latter group, thenlarged projection of the external surface of the tentacle sheath,

FIGS 16-19. Armature of Mustelicola andurcicus sp, nov, 16. Internal face, metabasal region. 17. Bothridial face. metabatal region, external face is on right. 18. External face, metabasal region, showing 3 double chainettes, $\mathrm{C}_{1}-\mathrm{C}_{3}$. Note slight counterclockwise torsion of tentacle. 19. Hooks $1-6$ of principal row drawn to same seale and chainette hook (c). Scale lines: Figs $16-18,0.05 \mathrm{~mm}$; Fig 19, 0.03 mm ,
sometimes described as being nucleated and supported by vircular bands of muscle running around the tensacle sheath is clearty visible (Dollfus 1942).

The most important character of the genus, is the armature which is poecibacanthous in form and not that of an arypical hetcroacanth or a typical heteroacanth. Dolltus (1969) did nor illustrate the external surtace of the tentacle armature fully. By re-orienting the type specimen and examining an isplated tentacle, a unique poeciloacanthons arrangement consisting of three double chainettes was clearly seen (Pigs 6-9). This same ammature was seen in specimens of the new species, M. antarcticus, described above. Whein compared with the armature of genera such as Lacisfarhyuchus and Calliteirashyneflus there is a remarkable constancy of hook number. In both of these genera, each row contains five major hooks. Hook 6, however, is small and is situated slighty out of alignoment with the principle row. Hooks 7 and 8 , the so-called satcllite hooks", are arranged in randen, much as the pairs of hooks $9\left(9^{\prime}\right)$ of the chainette. If the amature of Lacistorhynchus and Callitetrarhyncius were rearranged simply by displacing hook 5 so that it lay in tandem with hook 6, and hooks 7 to 9 were of the same shape, then there would be six hooks per principal row ind three ehainettes formed, exactly the armature present in Mustelicola. Becausc of the smilatiles of hook number and dispositjon we believe that Mustelicola has close affinitics to Lacistorhyruchus and Cullitetrurhynchus; boll genera, of course, are poeciloacanths. A hermaphroditic duct is also present in Mustelicola, Latistorhynchus and Collitetrarhynchas,

Details of the reproductive system of Mustelicola woodsholei could not be obtained bewause the single specimen lacks fully developed segments. However, the major organs can be seen and the vagina can be traced in close parallel to the "cirrus sac" to a point beyond its midlength where it appears to unite. The sac 35 -surrounded by a coat of muscle fibers and a dilation is appatent in the vas deferens before it enters the sac. In M, woodsholes all the manture segments have everted cirri and hernce the details of the distal ducts cannot be determined. It probably possesses a hermaphoroditic sac. In the naw species, M urlareficus, details of the "eireus sac" tatit be sepen clearly. The vagina entets the sac on its posterior margin, and the unarmed cirrus resides in a simus cavity distal to an internal seminal vesiete. A cormmon dene leats to the genital pure on the segmert margin. This arrangement is, theretors, a hermanternditic sac not a cirrus hac. Commaction of the muscular coat causes formation of a suckerlike protuberance it which the sinus cavity is broughis to the surfice:

Both M. woodsholei and M. antarcicus possess afmatures uf six hooks per princjpal row and three chainetes, two bothridia, pars bothridialis longer than pars bulbosa, lack prebulbar organs, possess numerous gland cells in the pedunculus seolecis, acraspedote segmens, uterine pores, siectate nteri, crescent-shaped ovaries, and U-shaped shell glands. M. anturalicus may be distinguished from M. woodstrolei by the following chatacters: scolex proportions of pars bathridialis 10 pars vaginalis (1: 1.3 versus $1: 2.1$); hooks $2\left(2^{\circ}\right.$) and $3\left(3^{\circ}\right)$ differ in form (abruptly curved in M. antarclicus versus. gently curved in M. woodsholei) and size (hook length $2\left(2^{\prime}\right)$ markedly larger than $3\left(3^{\circ}\right)$ in M. ahtarcticus bit equal to or slightly smaller in M. woodsholer; testis number (about 780 in M . antarcricus versus about 300 in M. woodshole7); atutenal seminal vesicle in M. antancticus apparently absent in M. woodsholei.

We propose that the diagnoses of the family and genus be cmended to include these cor rectums and distinctive charaters that separate hem from ther trypanorhynehs as follows:

Mustelicolidae Dollfus, 1969, smended

Diagnosis Order Trypanorhyucfa, Poeciloacanthous with muliiple chainettes onposite principal tows. Scolex with two, well-separared sessile bothridia will frec margins. Rhyncheal apparatus well developed, True prebulbar organs absent. Tentacles and bulbs relatively shurt. Segments numerous. Gerilal pores marginal. Testes numerous, intervascular, internal or external sensinal vesicles present. Ovary posterior. Uterus saccular with ventral pore Vitellaria circumcortical. Aduls parasitic in spital valve of etastnobranchs. Type and only genus:

Mustelicola Dollfus, 1969 emended

Diugnosis: Sicolex acraspedote. Two buthridia patelliform, rimmed, without posterior noteh; not contiguous apically. Pars hothndialis longet 1fiam pars bulbosa. Bulbs short. Pars postbulbosa very shorl. Tendacle sheaths irregutarly sinuous Kctractor miscle originales in antetior pertien of bult. Tentacler lack hasail swetting. Armature consisting of three double chainettes opposits hooks $1\left(1^{\prime}\right)$ of principal rows. Principal rows alternate. Sirobila allapolytic (?), segmerts acratspedore Genital pores irregharly alternate Hermaphroditic sac presenil. elrus present, interitit vemomal vesiele present;
external seminal vesicle present. Testes medullary, surround ovary and available intervascular space. Ovary bilobed in dorsoventral view, shell gland well developed; uterus median, pore preformed. Vitelline follicles form a sleeve enclosing all reproductive organs. Eggs anoperculate. Osmoregulatory system complex, anastomosing frequently.
Type species: Mustelicola woodsholei Dollfus, 1969. Other species: M. antarcticus sp. nov.

Hosts: Spiral valves of triakid sharks.

Acknowledgments

Our thanks to Dr A. Petter, Laboratoire des Vers, Muséum National d'Histoire Naturelle, Paris, for loan of the type specimen.

This project was supported financially by the Australian Biological Resources Study.

References

Dollfus, R. Ph. (1942) Études critiques sur les fetrarhynques du Muséum de Paris, Arch. Mus. Natl. Hist. Nat., Paris 19, 1-466.
(1969) Quelques espèces de cestodes Tétrarhynques. de la cote Atlantique des Etats Unis, dont l'une n'était
pas connue a l'état adulte. J. Fish. Res. Board Can. 26, 1037-1061.

Schmidt, G. D. (1986) "Handbook of Tapeworm Identification." (CRC Press, Inc., Boca Raton, Florida).

[^0]: - Dept, of Biology, Southeastern Massachusetts University, North Dartmouth, Massachusents 02747. U.S.A.

 I Central Vetcrinary Laboratories, c/o Institute of Medical und Veterinary Sciente Fronic Road, Adoluide S. Aust 50001

